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1 Introduction 
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This final report covers work performed under Contract NCC 2-220 between NASA Ames 
Research Center and the Knowledge Systems Laboratory, Stanford University. The period of 
research was from March 1, 1987 to February 29, 1988. Topics covered were: 

1. concurrent architectures for knowledge-based systems: 
2. methods for the solution of geometric constraint satisfaction problems: 
3. reasoning under uncertainty. 

The research in concurrent architectures was co-funded by the Defense Advanced Research 
Projects Agency (DARPA), as part of that agency's Strategic Computing Program. The research 
has been in progress since 1985, under DARPA and NASA sponsorship. This is the primary 
task under this contract, and the extensive treatment given below, relative to the other two 
tasks, reflects that fact. 
The research in geometric constraint satisfaction has been done in  the context of a particular 
application, that of determining the 3D structure of complex protein molecules, using the 
constraints inferred from NMR measurements. This work has also been in progress for several 
years, and has been co-funded by DARPA. 
The research on reasoning with uncertainty has been largely carried out by Mr. David 
Heckerman, a Ph.D. candidate in our laboratory, under the supervision of the Principal 
Investigators and Dr. Edward Shortliffe. 

2 Concurrent Architectures 
This research is addressing the following questions: 

1. Can multiprocessor computers be used to achieve significant execution speedup (two 
to three orders of magnitude) over serial machines for knowledge-based system 
applications? 

2. What are the limiting factors in achieving speedup for such systems? 
3. What are appropriate software models and methodologies for programming such 

4. What are appropriate hardware architectures for supporting such systems? 
systems? 

In the following subsections, we present the major components of our project and the current 
status of each. 

2.1 SIMPLEKARE Multiprocessor Simulation System 
Simulation of systems at  an architectural level can offer an effective way to study critical 
design choices if (1) the performance of the simulator is adequate to examine designs executing 
significant code bodies -- not just toy problems or small application fragments, (2) the details 
of the simulation include the critical details of the design, (3) the view of the design presented 
by the simulator instrumentation leads to useful insights on potential problems with the design, 
and (4) there is enough flexibility in the simulation system so that the asking of unplanned 
questions is not suppressed by the weight of the mechanics involved in making changes either 
in the design or its measurement. 
STMPLEKARE (KSL 86-36) is a simulation system which satisfies these requirements. It 
forms the foundation for our empirical investigations of software architectures and hardware 
system architectures for concurrent knowledge-based systems. SIMPLE is a CAD (Computer 
Aided Design) system for hierarchical, multiple level specification of computer architectures 
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and includes an associated mixed-mode, event-based simulator. CARE is a parameterized, 
multiprocessor array emulation specified in SIMPLES specification languages and running on 
SIMPLE's simulator. Our simulation system is in use by several research groups at  Stanford, 
and it has been ported to several external sites including NASA Ames Research Center. 

2.1.1 The Design of SIMPLEICARE 
The overall research problem motivating the development of both SIMPLE and CARE is the 
performance study of 100 to 1000-processor multiprocessor systems executing knowledge-based 
signal interpretation applications. 
A set of constraints pertinent to this problem governed the design of SIMPLEICARE. The 
applications represent significant bodies of code and so simulation run times are an important 
consideration. Moreover, the issues involved with the interactions of multiprocessor system 
elements are sufficiently unexplored prior to simulation that simplifications in the architectural 
model, specifically with respect to processor interactions, are suspect. This need for detail is, 
of course, in tension with the need for simulation performance. The ways that simulated 
system components are composed into complete systems is difficult to bound. Further, i t  is 
clear that the models of these components are elaborated over time and undergo substantial 
change as design concepts evolved. It is also clear that the ways of examining the operation of 
these components would change independently (and at a great rate) as early experience indicates 
what alternative aspect of system operation should have been monitored in any given 
completed run. 
The design goals that emerged are (1) that the simulation system should support the 
management of substantial flexibility with regard to simulated system structure, function, and 
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail 
of simulation should be particularly focused on the communications, process scheduling, and 
context switching support facilities of the simulated system -- that is, on just those aspects of 
system execution critical to multiprocessor (as opposed to uniprocessor) operation. 

2.1.2 Architecture Design-time Interaction and Simulator Run-time Operation 
Encapsulation of the state of design components with the procedures that manipulate that state 
is one clear way to manage architectural design evolution. Such encapsulation partitions the 
design along well defined boundaries. Components (by and large) interact with other 
components only through defined ports. Connections between components terminate at such 
ports. When a system simulation is initialized, connections are traced so that for every port, 
the simulator knows the connected (terminating) ports together with their containing 
components. Once such initialization is complete, that is, throughout the simulation run, 
assertions about the state of a port of one component can be directly translated to assertions 
about the state of connected ports of other components. 
Partitioning issues of system structure, component behavior, and instrumentation into separate 
domains of consideration helps in managing a design that is both fluid and complex. System 
structure, that is, the relationship between components, can be specified through use of an 
interactive, graphics structure editor and is largely independent of component function per se. 
Figure 1 shows an example of SIMPLE'S structural editor. 
Component behavior is encapsulated in a set of definitions pertinent to the given class of 
component. Each component in a SIMPLE specified simulated system is a member of a class 
defined for that component type. Instrumentation is automatically and invisibly made part of 
the definition of each simulated component that is to be monitored during a run. This is 
done by arranging that the class of every component to be monitored is a specialization of the 
general instrumented-box class. The basic data structures and procedures for monitoring 
simulated components and maintaining the organizational relationships between each 
component and its related instrumentation are inherited through this general, ancestral class 
and are thus made a separate, substantially independent consideration in the design. 
A further partitioning of concerns is employed to separate out the definition of the application 
programming language interface and its support (as provided by CARE) from the underlying 
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Figure I: Graphic Structure Specification 

information flow control governing component behavior. The behavioral descriptions of 
components (which are expressed as sets of condition/action rules) deal generically with gating 
information, independently of the structure of the information, between ports of the 
component and its internal state variables. This is separated in the component model 
definitions from the functions performed to create and manipulate the information so gated. 
The simulated implementation of the application programming language support facilities, on 
the other hand, relies only on the specifics of the information and its structure and plays no 
part in gating i t  between the components of the system. Changing the definition of the 
application language is thus done independently of changing component flow control behavior. 
The application programmer and the implementer of the application language interface may 
use whatever data structures seem suitable to them, be they numbers and keywords or procedure 
bodies and execution environments. The simulation system doesn't care. 
The component probe definitions, that is, the specifications of what information should be 
captured for each component type, are separated from the descriptions of the behavior of such 
components. In designing for flexibility in the instrumentation system, i t  turns out to be 
important to further divide the information presentation from the information collection 
issues. The mapping from particular component probes to particular instrument panels and the 
transformations to be applied to the information as it passed from a given kind of probe to a 
given panel (and between panels) is captured in the instrument specification. This is a 
definition of what kinds of panels are included in an instrument, how they f i t  on an 
instrument screen, how they are labeled and scaled, and what information from which kinds of 
probes are displayed on each panel. The instrument specification also indicates what kinds of 
probes are to be connected to which kinds (that is, which classes) of components in the system. 
Putting together all the definitions of components, component probes, panels, instruments, 
applications interfaces, and inter-component relationships is done in a set of design time 
interactions by a system architect. These interactions are used by the simulation system to 
generate efficient run time representations so that simulation performance goals can be met. 
Figure 2 illustrates the partition between design time interactions and simulation run time 
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Figure 2: Design Time Interactions and Run Time Representations 

operation. Structure editing pulls together components from the component library to produce 
a circuit. Associated with some components in the library, there are definitions for the syntax 
and underlying mechanisms of a multiprocessor applications language. These specify the 
interface used to provide the program input to the multiprocessor system being simulated. The 
definitions used to generate component probes are associated with each library component to 
be monitored. There may be several such definitions, each appropriate to measuring a 
different aspect of the associated component’s operation. An instrument specification selects 
from these definitions, elaborates them with selections from a set of probe operation modules 
to include any pre-processing (for example, a moving average) to be calculated by the probe, 
and indicates under what conditions what information from the probe is to be sent to which 
panels of the instrument and how it is to be transformed and displayed there. Instrument 
specifications also partition the screen among the panels of the instrument. The end product 
of these design time interactions is an instrumented circuit and an instrument. The instrument 
comprises a set of instrument panels and a set of constraints relating them to the instrument 
screen. The instrumented circuit ties together instances of components, probes, and panels for 
a simulation run. Figure 3 gives an example set of instrument panels for a run. 
For each defined class of component and its associated probes, the design time interactions 
produce code bodies that accomplish simulation operations during a run. It is an attribute of 
the underlying Lisp base of the simulation system that changes in these definitions have 
immediate effect even during a simulation run -- an important capability during debugging. 

2.2 LAMINA Programming Interface 
LAMINA (KSL 86-67) provides extensions to Lisp for studying expressed concurrency in 
functional programming, object oriented, and shared variable models of concurrent 
computation. The implementation of the support for all three computational models is based 
on the common notion of a stream, a datatype which can be used to express pipelined 
operations by representing the promise of a (potentially infinite) sequence of values. LAMINA 
also provides system support for the management of software pipelines and dynamic structure 
creation, relocation, and reclamation in a multiprocessor, multi-address-space system. 
Algorithms and applications written in LAMINA may be run on the SIMPLEICARE 
simulation system in order to study their execution on alternative multiprocessor architectures. 
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Figure 3: Overseer Instrument 

2.2.1 Futures and Streams 
Futures and streams provide the common ground between functional, object oriented and 
shared variable programming in LAMINA. They are fundamental to the LAMINA functional 
and object oriented programming regimes for parallel programming and, since they are the only 
mutable items passed as references (rather than structure values) between potentially concurrent 
computations in LAMINA, they are also used to build the mechanisms for shared variable 
computation. 
Futures and streams represent promises for values. In LAMINA, futures can be used as 
placeholders in a computation while the values themselves are being eagerly produced by 
concurrent evaluations for consumption as available. Extending this idea, LAMINA defines a 
stream as an abstract data type which is a placeholder representing a sequence of eagerly 
produced but potentially unavailable values. 
Some operators do not require the actual values promised by a stream or future in order to 
perform their work. For example, a constructor may create data structures that include streams 
as structure elements. The creati2n can be accomplished without accessing any of the promised 
values that the streams represent; referencing streams as placeholders is sufficient. Further, 
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streams, as sequences of potentially unavailable but eagerly produced values, can be used in 
LAMINA to build pipelines of computation connecting the producers and consumers of such 
values. 
Streams may be arguments to or the results of function application. In LAMINA, streams are 
a primitive data type developed for use in an object oriented programming style and futures 
are a specialization of streams that represent only a single (potentially unavailable) value as 
required for the functional programming style. Streams and futures are always passed as 
references. 

2.2.2 LAMINA'S Models of Concurrent Computation 
Perhaps the style of computation most readily treated as concurrent is that of functional 
programming. LAMINA supports concurrent programming using this style by providing means 
(1) to spawn computations that will provide values to futures and (2) to accept such values in 
a computation -- scheduling the computation when they are available. The constructs defining 
the LAMINA interface for functional programming are: 

(future form) spawns execution of a lexical closure, that is, a procedure body to 
execute a given form together with an environment (determined by the rules of 
lexical scoping) in which to do the execution. This closure is executed (eagerly) on 
a randomly selected site. A future which will contain the value of the computation 
when it is available is immediately returned. 
(with-values future-bindings forms) spawns an evaluation on the local site to 
execute the closure corresponding to the forms. The evaluation is done within an 
environment that includes bindings for given variables to the values available for 
the indicated futures. The evaluation is deferred until all of the indicated futures 
have values that are not themselves futures. The immediate result of executing a 
with-values form is a future whose value will be supplied by the deferred 
evaluation. 

In LAMINA'S object oriented programming interface, an object encapsulates related state 
variables and is referenced throughout an application by that object's Self-stream, a stream 
which is one of the object's state variables. Objects are allocated in a processor's local address 
space. To perform operations on an object, potentially involving and modifying its state 
variables, a task request posting consisting of a task selector and associated parametric values 
for the operation is sent to the object, that is, provided as one of the values of the self-stream 
for that object. Each of the task request postings that provide the values for the self-stream of 
a object is taken in turn from that stream and serviced by that object. 
Task request postings are serviced atomically in the context of an object. Executions specified 
by such request postings are done without visible partition with respect to other operations on 
that object, that is, operations on any given object will not be interleaved. Each operation is 
thus defined to be independently atomic. 
All the operations on an object done as specified by the requests are taken in turn from the 
object's self-stream. If an operation on an object is 
preempted (due, for example, to page faulting, schedule quanta lapse, or error condition), no 
other operation on that object will be started before the preempted operation is completed. 
However, operations on other objects may proceed normally. A stack is maintained for each 
preempted operation. 
Shared variables are dealt with in LAMINA by treating them as references whose associated 
value may be mutated. A shared variable reference is constructed, accessed, and mutated by 
provided interface operations. Support for shared data pairs and arrays is also provided. For 
all these operations, execution is deferred and no other executions are performed by the 
initiating processor until the indicated operation is accomplished. 
Shared queues (which are streams) are also provided. These queues are maintained in a 
processor's local memory. When a process reads from a shared queue, it is halted and 

Each operation runs to completion. 

\ 
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descheduled; execution is resumed when the requested data arrives. A simple spin lock is 
provided for busy-wait synchronization in the LAMINA shared variable interface. 
Several utility operations are provided by LAMINA to specify computation (and storage) sites, 
dismiss computations, and provide a timeout facility for applications desiring one. LAMINA 
also provides simulation control facilities to initiate a CARE simulation, read the current 
simulation time, and do a computation without increasing the simulation time. 

2.3 Poligon Problem Solving Framework 
Poligon (KSL 86-19, KSL 88-04] is a framework for the development of Blackboard-like 
applications on a (simulated) multiprocessor. I t  consists of: 

1. A compiler, which compiles a high-level description of the Blackboard's structure 
and the Knowledge to be applied by the system, to run on a distributed memory 
mu1 tiprocessor. 

2. A run-time system which provides a debugging and testing environment for Poligon 
programs as well as run-time support. 

Both the compiler and the run-time system are thoroughly integrated with the program 
development environment of TI Lisp machines, the machine on which the execution of Poligon 
programs are simulated. 
Serial Blackboard Systems are implemented with the Nodes being represented as records on the 
Blackboard. The Knowledge is encoded in Knowledge Sources. These are typically compiled 
into procedures which are invoked by the Blackboard System's kernel. There is some form of 
scheduler for the Knowledge, which invokes one Knowledge Source after another. The 
Blackboard and the Knowledge Base both share the same address space, though they are 
functionally distinct. Knowledge Sources are "invoked" (executed) as a result of changes in the 
Blackboard placing that change event in a queue used by the scheduler. The scheduler 
repeatedly picks a Knowledge Source which is interested in the type of event at the end of the 
queue. 
The design of Poligon has been motivated by the idea of trying to eliminate the bottlenecks 
that would be experienced if an existing, serial Blackboard System were to be parallelized only 
by the inclusion of "do this bit in parallel" constructs. The major changes from the serial 
blackboard model are listed below. 

The scheduling queue of a serial system is eliminated altogether in Poligon. This 
means that concurrent attempts to invoke Rules are not held up waiting for access 
to this shared data structure. 
Having a Knowledge Base, which is logically distinct from the Blackboard, is no 
longer necessary since there is now nothing to get between them to control the 
application of the knowledge. This allows all Knowledge to be attached to those 
Nodes that are interested in the Knowledge by the compiler. 

These changes eliminate at one stroke the bottlenecks of the shared scheduler and the 
Knowledge Base to Blackboard interface. These changes allowed the development of the idea 
of the "Node as a processor" metaphor for parallel Blackboard systems. 
Having eliminated the scheduling mechanism, however, one needs some means of determining 
when a certain piece of Knowledge should be invoked. It would be hopelessly inefficient to 
have all of the Knowledge executed all of the time, since most of the time it would find itself 
inapplicable. It was decided that a simple daemon-driven approach would be used to avoid 
this problem. This results in the Knowledge being directly sensitive to changes in the 
Blackboard and able to act immediately upon any such changes. 
Existing Blackboard Systems often express the Knowledge in their Knowledge Sources as 
collections of Pattern/Action Rules. These are normally executed serially, in the lexical order 
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in which they are defined. Poligon on the other hand compiles Knowledge Sources away all 
together, allowing their constituent Rules to be executed in parallel. 
The "Node as a processor" metaphor is itself a 'major step away from the normal means of 
implementing Blackboard Systems. This, however, is not enough. This would give us data 
parallelism, resulting from the large number of Nodes in the system being able simultaneously 
to execute Rules, whilst still failing to exploit the potential Knowledge parallelism. This is 
because each processing element is a uniprocesor capable of executing at  most one Rule at a 
time. Poligon, therefore, goes beyond this simple model to one which would more accurately 
be called the "Rule invocation as a process" model. This allows the Poligon system to 
distribute concurrent Rule invocations to different processing elements. 
The elimination of serializing components in a Blackboard system also eliminates those 
mechanisms which are normally used to preserve coherency in the solution. Clearly there is a 
trade-off which can be made between the amount of control and coherency preserving 
mechanisms and the amount of exploitable parallelism. Poligon is an experiment to explore 
one extreme of this spectrum. It remains to be seen whether the trade-off made in Poligon 
results in an overall improvement in system performance. 

2.3.1 How Poligon matches the problem domain 
Poligon is not a general purpose programming language, other than in the Turing Complete 
sense. It is specialized to support one computational model and that computational model, 
itself, has limitations on its sphere of reasonable applicability. It has been designed with 
applications such as real-time signal understanding and data fusion in mind, though 
applications outside this domain are being investigated. 
The structure of the problem domain is one that requires the representation of a large number 
of distinct entities in the solution space. For example the vocabulary of the Elint problem 
domain (see Section ) is full of such things as aircraft, radar emitting platforms and radar 
track segments. Poligon provides a rich representation language in which these objects and 
specializations of them can be expressed. This allows the system to take full advantage of the 
mutual independence of any of the objects in the solution space to exploit parallelism. 

2.3.2 How Poligon matches its target hardware 
Poligon could, of course, run on any machine in principle. In practice, however, it has been 
designed with a CARE type of machine model in mind and has been optimized to take 
advantage of it. The grain size of the executable chunks in Poligon programs is designed to 
suit this model, Le. each chunk represents, ideally, a few function calls. This makes it coarser 
grained than those systems that want to execute everything that can be in parallel, for instance 
data flow machines, but it is a lot finer grained than most other concurrent Blackboard 
Systems in which each processing element contains a complete Blackboard System. 
The target machine model, being of the distributed-memory, message-passing variety including 
essentially no capability to pass references, strongly discourages shared variables or mutable 
global data of any sort and encourages a message-passing style of programming. The Poligon 
language is one in which the programmer is given an abstract view of programming using the 
Blackboard Problem-Solving model. The Poligon language has no construct for message 
sending at all, nor has it any primitives by which the user has access to the underlying 
architecture or topology. It is assumed to be the duty of the Poligon system or the target 
machine's operating system to look after such concerns. The Poligon compiler compiles its 
programs into the message passing primitives of the underlying system. This allows the 
efficient use of the underlying architecture, whilst still leaving the source program uncluttered 
by concrete details of the target architecture. 
Poligon allows only global constants (but not variables) since these can be distributed at 
program load-time. 
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2.3.3 What we have learned to date 
Experiments with Poligon are by no means complete, but we have learned quite a bit so far. 
Some of these lessons are enumerated below. 

It  is very hard to write any program which implements either a framework, such as 
Poligon or an application such as those which have been mounted on Poligon. This 
is due largely to asynchronous side effects. A system with better formal properties 
would be less error prone in this respect but might well make much less efficient 
use of the hardware. These difficulties could also be caused by an insufficiency of 
mechanisms to control coherency in Poligon. 
In order to produce a reliable program it is necessary to write code which makes no 
assumptions about anything that any other part of the system might be doing. 
Failure to do so results in brittle systems. 

s In order to achieve a coherent solution it was found to be necessary to develop a 
number of programming methodologies. 

Node Level 

Slot Level 

Rule Execution 

The creation of Nodes is tricky. Because each element is likely to 
represent some real-world object, such as an aircraft, it is 
important either to provide a mechanism for  resolving the 
conflict caused by multiple asynchronous requests to create an 
element that represents the same thing or to provide a mechanism 
for managing the creation of Nodes. Poligon opts for the latter 
approach. 
The programmer should cause each Node to have an idea of how 
to improve its own idea of the solution - to have Goals. In 
Poligon this is done at a fine grain, with each field of each 
element in the solution being able to have associated with it 
functions which enable it to evaluate itself. 
It was found that a good axiom for programming these systems is 
"Never throw away any data unless you are convinced that you 
have better data." This is the sort of behavior that is used in the 
evaluation functions mentioned above. 
Poligon attempts to maintain the smallest critical sections 
possible. The original implementation of Poligon in fact had as 
its only atomic actions reading a field and writing a field. It was 
soon found that, in order to maintain consistency during rule 
execution, it had to be possible to read the values from a number 
of fields simultaneously - taking a snapshot without the subject 
moving. This, coupled with critical sections for the writing of 
collections of values, allows confidence that the picture that one 
sees when taking such a snapshot of a Node is consistent, even if 
not necessarily the most up to date. It is important for  a Poligon 
programmer to be aware that the Node of which a snapshot has 
been taken may well be read from and written to by other Rules 
asynchronously during the invocation of the Rule taking the 
snapshot. 

2.4 CAGE Problem Solving Framework 
CAGE (KSL 86-31, KSL 88-02] is a framework for building and executing applications as a 
concurrent blackboard system. CAGE is based on the AGE (KSL 80-29) serial blackboard 
framework. I t  includes mechanisms for the concurrent execution of knowledge sources, rules 
and parts of rules. The CAGE user has complete control over which of these mechanisms are 
used. CAGE is designed to execute on a shared-memory, multiprocessor system with tens to 
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hundreds of processors. It is implemented using Qlisp, a concurrent dialect of Lisp designed 
for multiprocessors with a single, shared address space. CAGE currently executes on a shared- 
memory varient of CARE (see Section ) simulated using the SIMPLE simulation system. 

2.4.1 CAGE Design 
CAGE is a blackboard framework system. In addition to the basic functionality found in 
AGE, CAGE allows user-directed control over the concurrent execution of many of its 
constructs. Otherwise, the two systems are functionally identical. The basic components of a 
system built with CAGE are: . A global data store (the blackboard) on which emerging solutions are posted. The 

elements on the blackboard are organized into levels and represented as a set of 
attribute-value pairs. . Globally accessible lists on which control information is posted (e.g. lists of events, 
expectations, etc.). . An indefinite number of knowledge sources, each consisting of an indefinite 
number of condition-action rules. . Various kinds of control information that determine (a) which blackboard element 
is to be the focus of attention and (b) which knowledge source is to be used at any 
given point in the problem solving process. 
Declarations that specify the components (knowledge sources, rules, condition and 
action parts of rules) to be executed in parallel, and when to force synchronization. 

Using the concurrency control specifications, the user can alter the simple, serial control loop 
of CAGE by introducing concurrent actions. CAGE allows parallelism ranging from 
concurrently executing knowledge sources all the way down to concurrent actions on the 
condition and action sides of the rules. 

2.4.2 Building applications in CAGE 
The CAGE System provides a CAGE language with which the user can write an application. 
The type of user-supplied information is similar to that required for applications constructed 
in the AGE system, however, the structure of the information is somewhat different. 
Blackboard Data Structure 
There are two major components in the CAGE blackboard structure, the hypothesis classes 
(frequently called levels in hierarchical blackboard structures) and the hypothesis nodes. The 
user must specify the classes that make up his application's blackboard structure. For each 
class, the user must define the fields to be associated with the nodes created in that class. 
Nodes are created in those classes, either a priori by the user or dynamically while executing 
the user's rules. Each of the classes is defined as an object with the attributes as instance 
variables and with the nodes as instances of the class objects. 
Control Structure 
All CAGE control information is referenced through the Control-Structure object which is 
basically the same as in AGE. 
Knowledge Sources 
CAGE knowledge sources are partitions of the application knowledge. Each knowledge source 
consists of some declarative information and a set of rules. 
Knowledge Source Declarations A knowledge source consists of more than just groups of rules. 
In order to interpret the rules properly, CAGE needs answers to some questions about 
knowledge source control, for example, 

Under what circumstances should this knowledge source be invoked? 
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. Which one, of all of the rules whose condition part is satisfied, should be executed? . Are there any local variables to be defined for this knowledge source? 

The following are the primary knowledge source control options available for the user to use 
in order to tailor a knowledge source: 

Preconditions: A list of tokens, representing the event names used in rules. If the 
currently focused event has an event name that matches one of the knowledge 
source's preconditions, then that knowledge source is activated. 

Hit Strategy: There are two main hit strategies available in CAGE, Single and 
Multiple. When a knowledge source with a single-hit strategy is invoked, the rules 
of that knowledge source are evaluated, in order, until one rule's condition is 
satisfied. Then, the actions of the action part of the rule are executed, and no 
further rule is evaluated. With a multiple-hit strategy, the condition parts of all the 
rules are evaluated, and all the action parts of the rules whose conditions were true 
are executed. 

Definitions: A list of local variables. The definitions are an efficiency feature to 
avoid the repeated calculation of the same variable. The structure is similar to that 
of LET, pairs of a variable names and expressions. 

Rule Order: A list of rule names, representing the rules of the knowledge source. 
This is the order in which the rules are to be evaluated when in serial mode. 

Rules 
CAGE rules consist of three major parts: definitions, conditions, and actions. 

Definitions: The definition part of a rule is similar to a LET in structure. The 
scope of the variables defined here is the rule, both in the condition and action 
parts, as well as other definitions in the rule. 

Condition part: The condition part consists of one or more conditional clauses. 
The clauses can be an arbitrary expression. The condition part can reference both 
the variables local to the rule or to the knowledge source. The CAGE system 
provides several access functions for retrieving values from the blackboard nodes 
which can be used in the condition part. 

The 
actions specify the changes to be made to the blackboard and how those changes are 
to be made. The user must specify what node and attributes on the blackboard are 
to be changed, what the new links or values are, and how those changes are to be 
made (possibly deleting some old values). The user must also specify an event name 
representing the type of change this action makes to the blackboard. If and when 
the event created by this action is selected as a focus event, this token will be 
matched against the preconditions of the knowledge sources to determine which 
knowledge source to invoke next. 

Action part: The action clauses make up the final part of a CAGE rule. 

2.4.3 Specifying Concurrency 
CAGE supports the concurrent evaluation of various pieces of knowledge. The use of 
knowledge sources to partition the knowledge in blackboard systems and, in particular, the 
structure of the knowledge sources in CAGE provide several obvious places for concurrency. 
The knowledge sources group the domain knowledge into independent modules, which, 
theoretically, could be invoked independently and concurrently. Within each knowledge source 
the rules provide another source of parallelism, and within each rule, the clauses of the 
condition part and the different actions within the action part provide others. Of course, not 
all the clauses, rules or even knowledge sources are actually implemented totally independently 
of each other and some serialization may be necessary to solve the application problem 
correctly. 
The following are the options for parallelism available in CAGE, grouped according to their 
allowed use in combination. 
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Clause level: can be used in combination with each other or any other parallel 
option. 

actions: Execute the action clauses of a rule in parallel. Note: When 
running the actions concurrently non-determinism may result if both 
destructive (Supersede in CAGE) and constructive (Modify) actions occur 
to the same object-attribute. 

Note: 
Use the rule definitions to set any local variables tested here, insuring that 
the Ihs clauses will not be contending for the same data element. 

Again, 
these definitions should be independent of each other AND should avoid 
accessing the same data, if their concurrent evaluation is to result in an 
actual speed-up. 

Rule level: Definitions can be used in combination with any of the other options, 
but only one of the rule options, single, multiple, sync or nosync can be used at a 
time. 

conditions: Evaluate the condition clauses of a rule in parallel. 

rule-def initions: Evaluate the definitions of a rule in parallel. 

definitions: Evaluate the definitions concurrently at  the beginning of a 
knowledge source. 

rules-single: Evaluate all the condition parts of the rules of a knowledge 
source concurrently, but only execute the actions of one successfully 
evaluated rule. 

rules-multiple: Evaluate all of the conditions of the rules of a knowledge 
source concurrently, wait until all the evaluation is completed, then execute 
the actions of all the successfully evaluated rules serially. 

rules-sync: Evaluate all the condition parts of the rules of a knowledge 
source concurrently, wait until all the evaluation is completed, then execute 
the actions of all applicable rules concurrently. 

rules-nosync: Evaluate the condition parts of the rules of a knowledge 
source in parallel and execute the action part of each rules as soon as the 
conditions evaluate to true. Executed the actions within the action part in 
parallel. With this option there is no synchronization between the rules in 
the knowledge source. 

source can be set at any one time. 
Knowledge source level: Only one of the concurrency options for the knowledge 

kss: Activate all the applicable knowledge sources at once. 
Synchronization is accomplished by waiting for all knowledge sources to 
complete execution (and the event list is updated) before invoking a new 
set of knowledge sources concurrently. 

kss-nosync: Invoke all applicable knowledge sources as soon as a new 
event is created. This option provides the least control of all the options 
available and does no synchronization. Many applications will have to be 
significantly changed to execute correctly under these conditions, 
particularly removing any possible circular knowledge source invocations. 
Without any synchronization, as soon as an event is created all relevant 
knowledge sources become active -- no events are added to the eventlist 
and no focus event is ever selected. 

kss-minisync: Add an event to the event list and do minimal 
computation at the point of synchronization before invoking the next set 
of knowledge sources. The main computation done is the collection and 
pruning of similar events, leaving fewer events to activate subsequent 
knowledge sources. 
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2.4.4 CAGE Machine Model 
Because CARE is a message passing, distributed memory model, we had to create a a shared 
memory variant of CARE to simulate CAGE execution. Currently we simulate an even 
number of processors, using half as processor-cache pairs and half as con troller-memory pairs. 
The atomic unit of memory access in CAGE is a blackboard node. Concurrent node access 
requests are handled by simple spin lock mechanisms. 
With CAGE-CARE every step of the simulation, down to a very low level, is measured. For 
example, one can track the length of the memory queues to get a handle on a major issue in 
programming concurrent blackboard systems, memory contention. Other measurable factors 
include the overhead for creating new processes, network communication costs and the cost of 
creating a new node. Using CAGE-CARE one can experiment with multiprocessors of various 
sizes and can get a reasonably accurate picture of the parallelism obtainable for a particular 
application. The only disadvantage for the user is the length of real time it takes to run a 
simulation on CAGE-CARE. and combinations later. 

2.5 CAGE, Poligon and LAMINA Comparative Experiments 
During the past contract period we have been developing application software and machine 
architecture models to support a series of end-to-end experiments comparing various 
concurrent programming systems for knowledge-based applications. The goals of these 
experiments are to: 

1. Obtain quantitative comparisons of the performance of the programming systems. 
2. Gain insights into how different concurrent programming models lead to different 

3. Force the refinement of the concurrent programming systems so as to better support 

4. Gain insights into the ease or difficulty of writing application code in each of the 

(or similar) application decomposition and organization. 

application development. 

programming sys tems. 

2.5.1 The Experiments 
The common application for these experiments is Elint (KSL 86-69), a real-time, knowledge- 
based system for integrating pre-processed, passively acquired radar emissions from aircraft. 
This Elint application has been implemented in three different concurrent programming 
sys tems: 

The concurrent object-oriented programming model supported by LAMINA (see 
Section ). LAMINA is the basic, low-level programming interface to CARE, a 
grid-based, distributed address space, message passing multiprocessor architecture 
(see Section ). 
The Poligon system (see Section ). Poligon is a demon-driven system derived from 
the blackboard model of problem solving. 
The CAGE system (see Section ). CAGE is a concurrent descendant of the AGE 
serial blackboard framework. 

Each of the implemented applications will be executed and evaluated using various input data 
sets and varying numbers of processors. 
Application code written in either LAMINA or Poligon compiles to code which executes on 
the CARE architecture. CAGE, however, is targeted toward a single address space, shared 
variable multiprocessor architecture. CAGE is implemented in QLisp, a concurrent Lisp for 
shared variable multiprocessors. To support CAGE we had to develop a multiprocessor 
"blackboard machine" variant of CARE. This blackboard machine models a shared variable 
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architecture and includes the mechanisms and instruments necessary to manage and study 
memory contention. The architecture implements the blackboard and the control data 
structures in global, shared memory. It directly supports the CAGE system and application 
code written in QLisp. 

2.5.2 Experiment Status 
During the past contract period we have: 

1. 

2. 
3. 
4. 

5. 

Completed the implementation of the the Elint application in each of the three 
concurrent programming systems. 
Completed the development of the blackboard machine variant of CARE. 
Developed an experiment plan for the comparative studies. 
Developed a new measure of speedup as a function of the number of processors in 
a multiprocessor system. This measure is useful for evaluating system performance 
of real time applications and is based on the concept of maximum sustainable input 
data rate. 
Completed the first set of experiments for each of the three programming systems. 

2.6 The AIRTRAC Application 
AIRTRAC (KSL 86-20) is the primary application driving our development of concurrent 
knowledge-based system programming methodologies. Also, it is one of the basic applications 
used for our multiprocessor architecture performance experiments. AIRTRAC is a knowledge- 
based signal interpretation and information fusion system. The system attempts to identify, 
track, and predict the future behavior of aircraft. In particular, i t  attempts to recognize 
aircraft which might be engaged in covert activity, for example, smuggling. The inputs to 
AIRTRAC are periodic radar tracking system reports, a priori, filed flight plans for some 
aircraft, and occasional intelligence reports about suspected covert activity. 
AIRTRAC is designed to be sufficiently complex and realistic to adequately test various ideas 
about concurrent problem solving on multiprocessor machine architectures. The AIRTRAC 
application involves continuous input data streams, typical of real-time signal interpretation 
problems. Such problems often require a level of computational power two to three orders of 
magnitude beyond what is currently available. Moreover, the application uses data-driven, 
expectation-driven and model-driven styles of reasoning. These reasoning styles encompass a 
wide range of paradigms in artificial intelligence. 

2.6.1 Overall Application System Structure 
The overall system consists of radar collection sites and associated trackers, filed flight plan 
sources, intelligence report sources, and the AIRTRAC system running on a multiprocessor. 
Output from each radar is fed to an associated tracker which produces periodic track reports 
for input to AIRTRAC. A tracker detects aircraft, estimates their positions and velocities, and 
assigns unique track identifiers. A tracker continues to assign the same identifier if it believes 
that the received signal is due to the same aircraft which was previously seen. Periodic reports 
from the tracker include the scantime, track identifier, and the mean and covariance of the 
position and velocity of the track. Because of tracker limitations, they usually lose a track 
when the corresponding aircraft makes a significant maneuver such as turning sharply. A 
tracker assigns different identifiers to the tracks before and after such a maneuver. One of the 
tasks of AIRTRAC is to connect such "broken" tracks. Another AIRTRAC task is to fuse 
multiple tracks which represent the same aircraft observed from different radar sites. 
A filed flight plan is information regarding the expected position at given times of the flight 
path of an aircraft. Since filed flight plans are only estimates of actual flight paths, their 
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track information is less precise then actual observed track data. Filed flight plans are usually 
available for cooperative aircraft. Intelligence reports provide information about possible 
origins, possible destinations, and possible flight times for aircraft engaged in covert activity. 
This information typically embodies a "tip-off" about covert activity. Due to the sketchy 
nature of the information, intelligence reports are even less precise than filed flight plans. 
AIRTRAC attempts to fuse observed tracks, filed flight plans, and intelligence reports which 
represent the flight path of the same aircraft. 

2.6.2 AIRTRAC Organization 
The AIRTRAC system is partitioned into three major modules. At the lowest level of data 
abstraction, the Data Association Module accepts as input the periodic output of the radar 
trackers. The primary task of the module is to abstract the periodic track reports into 
sequences of straight-line Radar Track Segments that represent (approximately) constant- 
heading, constant-velocity segments of an aircraft's flight path. Other tasks of this module are 
to recognize when a track with a new identifier is initiated, determine when sufficient evidence 
has been collected for a track to confirm its existence with a given probability, and to 
recognize when a track with a given identifier has been terminated. 
The Path Association Module receives the Radar Track Segments from the Data Association 
Module. I t  attempts to "connect" the segments into coherent tracks representing the flight 
paths of the aircraft under observation. It then attempts to fuse the tracks which correspond 
to the same aircraft observed from different radar sites. The module also accepts as input 
filed flight plans and intelligence reports, and it attempts to fuse the plans and reports with 
the observed tracks. The module uses models of aircraft performance characteristics such as 
velocity, acceleration and maneuverability to help form hypothesized flight paths. The Path 
Association Module must deal with ambiguous data, and it maintains, if necessary, alternative 
flight paths for an observed aircraft. For each alternative, hypothesized flight path, the module 
maintains a measure of confidence in the hypothesis which rises as more evidence is 
accumulated fitting the hypothesis and which falls if expected behavior consistent with the 
hypothesis does not materialize. 
The primary tasks of the Path Interpretation Module are to predict the future behavior of 
observed aircraft and to identify aircraft which are engaged or might engage in covert activity. 
The module takes into account the current and predicted flight paths of the observed aircraft, 
information about existing airports, known radar shadow regions, known flight corridors, and 
geographic and/or political boundaries. It uses models of aircraft behavior that embody 
strategies and goals to help form reasonable hypotheses. 

2.6.3 AIRTRAC Status 

The AIRTRAC Data Association Module and associated experiments were completed during 
past contract periods (KSL 87-61). The experiments were performed using the SIMPLEICARE 
multiprocessor simulation system. They demonstrated that almost linear speedup as a function 
of the number of processors can be achieved (at. least up to 100 processors) for a periodic 
data-driven knowledge-based system such as the Data Association Module. 
During the past contract period, the design and knowledge acquisition for the Path Association 
Module was completed. Over one half of the LAMINA code for  this module has been 
implemented and debugged. 

2.7 Multiprocessor Load Balancing Studies 
One of the more difficult problems in actually realizing high levels of concurrent execution of 
applications on mu1 ti processor systems is that of processor and/or memory load balancing. 
Based on our experiments with concurrent knowledge-based systems, the single largest 
impediment to achieving high utilization of multiprocessing resources is localized processor 
and/or memory "hot spots." That is, processors or memory acess queues which are overloaded 
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relative to the rest of the system. Such hot spots result in many of the processors sitting idle 
awaiting information from the overloaded resources. This load balancing problem is 
particularly acute for concurrent applications such as signal interpretation where there is 
significant dynamic (i.e., run-time) creation and destruction of processes and data structures. 
This situation is in contrast to well-structured applications such as finite element computations 
where all processes and data structures are known at load-time. 

2.7.1 Load Balancing Studies Status 
Our work to date on load balancing has focused on non-adaptive schemes. That is, schemes in 
which once a process is allocated to a processing site i t  remains there throughout its life. In 
adaptive schemes active processes can migrate between processing sites. 
For our earliest ELINT-CAOS experiments (KSL 86-69), we used an extremely simple load 
distribution scheme based on round-robin assignment of dynamically created objects to 
processing sites. This scheme resulted in poor resource utilization, for example, at best 25% 
average processor utilization for a 49 processing site CARE architecture. 
We next experimented with various dynamic load distribution schemes employing techniques 
such as each site keeping track of its (logically) immediate neighbor's loads and using 
application domain knowledge to predict the lifetime and busyness of dynamically created 
objects. These schemes resulted in, at best, very marginal improvement over the round-robin 
scheme. 
We then experimented with non-adaptive schemes based on random scattering of dynamically 
created objects to processing sites. Surprisingly, this scheme performed remarkably well relative 
to the earlier, more information intensive schemes. We are currently using a variant of the 
random scattering scheme in which each processing site is assigned an a' priori preference 
weight with respect to accepting dynamically created objects. These weights are based on the 
distribution of load-time created objects onto sites. The random distribution of dynamically 
created objects to sites is skewed so as to respect this weighting. 
Although this weighted random distribution scheme provides the most balanced loads that we 
have achieved to date, it still results in significant underutilization of machine resources. For 
example, we have achieved, at best, only about 50% average processor utilization on 64 site 
CARE architectures. 

3 Spatial Reasoning 
During the contract period we initiated development of an integrated system for possible 
export of PROTEAN. The ultimate goal of this portion of the work is a software package that 
provides a flexible framework for representing and using knowledge about protein chemistry 
and protein structures. It will include methods for general geometric constraint satisfaction 
and facilitate their use for protein structure determination. We expect to have most pieces of 
this package available for computer systems running the UNIX(Th4) operating system by early 
1989. 
A paper is being written summarizing PROTEAN from an A I  point of view, where the general 
issue is the problem of scaling up large-scale constraint satisfaction problems. The conclusions 
of that paper (and of the current phase of PROTEAN development) are that no single 
representation or algorithm is adequate, that simplifying assumptions and abstract models will 
be required, and that the role of heuristic reasoning is to choose the most appropriate 
representations, algorithms and control strategies during the problem solving. 

4 Reasoning Under Uncertainty 
This research focuses on methods for reasoning with uncertainty that are consistent with the 
Bayesian or decision theoretic paradigm. AI though most researchers appreciate the benefits of 
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a normative approach, many have turned away from the Bayesian paradigm because they 
believe it is impractical to use in the construction of large expert systems. Over the last year, 
David Heckerman has been developing a representation language consistent with the axioms of 
decision theory that facilitates the construction of such large reasoning systems. 
A common thread in much of the research in probabilistic reasoning over the past two decades 
is that the representation of conditional independence can be used to simplify knowledge 
acquisition and computation. The central notion in our current work is that there are many 
forms of independence, other than conditional independence, that can be exploited to simplify 
reasoning. 
Over the last year, we have identified various forms of independence and have designed a 
representation language that can accommodate these forms in a unified framework consistent 
with the axioms of decision theory. A discussion of the various forms of independence and 
how they can be represented is given in (KSL 88-07). 

5 List of Publications 
The reports listed below were written during the period of the contract, or are referenced in 
the previous discussion. Although some of the reports listed were not directly supported by 
contract funds, their publication was made possible in part by the work that was directly 
supported, e.g. KSL 87-47 reports on an expert system for construction site space planning, 
which uses concepts developed for  the PROTEAN system and subsequently incorporated in the 
ACCORD framework for spatial arrangement and assembly tasks. 
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